Communication-efficient hierarchical distributed optimization for multi-agent policy evaluation
نویسندگان
چکیده
Policy evaluation problems in multi-agent reinforcement learning (MARL) have attracted growing interest recently. In this setting, agents collaborate to learn the value of a given policy with private local rewards and jointly observed state-action pairs. However, existing fully decentralized algorithms treat each agent equally, without considering communication structure over network, corresponding effects on computation efficiency. paper, we propose hierarchical distributed algorithm that differentiates roles during process. This method allows us freely choose various mixing schemes (and matrices are not necessarily symmetric or doubly stochastic), order reduce cost, while still maintaining convergence at rates as fast even faster than previous algorithms. Theoretically, show proposed method, which contains methods special case, achieves same rate state-of-the-art methods. Extensive numerical experiments real datasets verify performance our approach indeed improves – sometimes significantly other advanced terms total
منابع مشابه
Distributed multi-agent optimization with state-dependent communication
Abstract We study distributed algorithms for solving global optimization problems in which the objective function is the sum of local objective functions of agents and the constraint set is given by the intersection of local constraint sets of agents. We assume that each agent knows only his own local objective function and constraint set, and exchanges information with the other agents over a ...
متن کاملAppendices of “ Distributed Multi - Agent Optimization with State - Dependent Communication ”
متن کامل
Optimization of majority protocol for controlling transactions concurrency in distributed databases by multi-agent systems
In this paper, we propose a new concurrency control algorithm based on multi-agent systems which is an extension of majority protocol. Then, we suggest a clustering approach to get better results in reliability, decreasing message passing and algorithm’s runtime. Here, we consider n different transactions working on non-conflict data items. Considering execution efficiency of some different...
متن کاملCommunication-Efficient Algorithms For Distributed Optimization
This thesis is concerned with the design of distributed algorithms for solving optimization problems. The particular scenario we consider is a network with P compute nodes, where each node p has exclusive access to a cost function fp. We design algorithms in which all the nodes cooperate to find the minimum of the sum of all the cost functions, f1 + · · · + fP . Several problems in signal proce...
متن کاملGradient Sparsification for Communication-Efficient Distributed Optimization
Modern large scale machine learning applications require stochastic optimization algorithms to be implemented on distributed computational architectures. A key bottleneck is the communication overhead for exchanging information such as stochastic gradients among different workers. In this paper, to reduce the communication cost we propose a convex optimization formulation to minimize the coding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Science
سال: 2021
ISSN: ['1877-7511', '1877-7503']
DOI: https://doi.org/10.1016/j.jocs.2020.101280